¿ËÈÕ£¬Ò¼ºÅÓéÀÖAPP×Ô¶¯»¯Ñ§ÔºÁõÃÀ½ÌÊÚÓë˶ʿÑо¿ÉúËÕÅôÔÚÈ˹¤ÖÇÄÜÁìÓò¹ú¼ÊÖøÃûÆÚ¿¯¡¶Expert Systems with Applications¡·½ÒÏþÌâΪ¡°MOD-YOLO: Rethinking the YOLO architecture at the level of feature information and applying it to crack detection¡±µÄÑо¿ÂÛÎÄ¡£¡£¡£¸Ã¿¯ÎªÖпÆÔº·ÖÇøÒ»ÇøTOPÆÚ¿¯£¬Ó°ÏìÒò×ÓΪ8.665¡£¡£¡£ÁõÃÀ½ÌÊÚΪͨѶ×÷Õߣ¬ËÕÅôΪÂÛÎĵÚÒ»×÷Õߣ¬Ò¼ºÅÓéÀÖAPPΪµÚÒ»Íê³Éµ¥Î»¡£¡£¡£
ÂÛÎÄÕë¶ÔYOLOϵÁÐËã·¨¿ÉÄܱ£´æµÄͨµÀÐÅϢɥʧÒÔ¼°¸ÐÊÜȱ·¦µÄÎÊÌ⣬Éè¼ÆÁËÒ»ÖÖMaintaining the original dimension-You Only Look Once(MOD-YOLO)Ëã·¨£¬²¢½«ÆäÓ¦ÓÃÔÚ»ù´¡ÉèÊ©µÄÁѺۼì²âÉÏ¡£¡£¡£¸ÃËã·¨ËùÓÐˢз½°¸¾ù¿É¼´²å¼´Óã¬Ê×ÏÈ£¬Ìá³öÁËMaintaining the original information-Deeply separable convolution(MODSConv)£¬½â¾öÁ˾µäÉî¶È¿ÉÊèÉ¢¾í»ýËù±£´æµÄÔÌØÕ÷²ãÖÐͨµÀ¼äÐÅÏ¢ÎÞ·¨½»»¥µÄÎÊÌâ¡£¡£¡£µÚ¶þ£¬Ìá³öÁËGlobal Receptive Field - Space Pooling Pyramid-Fast(GRF-SPPF)£¬»ñȡȫ¾ÖÊÓ½ÇÐÅÏ¢²¢¼õÇá²î±ð±ê×¼¾ÞϸËù´øÀ´µÄÓ°Ïì¡£¡£¡£µÚÈý£¬Ìá³öÁËDistinctive and average features-Coordinate Attention(DAF-CA)£¬²»µ«²Î¿¼Æ½¾ùÐÅϢҲ˼Á¿ÏÔÖøÐÅÏ¢£¬Äܸü׼ȷµØÕÒµ½²¢ÔöǿҪº¦ÐÅÏ¢¡£¡£¡£ÔÙÕߣ¬ÒÔMODSConvÓëDAF-CA»úÖÆÎª»ù´¡£¬Éè¼ÆÁËMaintaining the original information - Deeply separable layer(MODSLayer)£¬Í¨¹ýÒ»ÖÖͨµÀ²»½µÎ¬µÄ·½Ê½±£»¤ÁËͨµÀ¼ä¸»ºñµÄÐÅÏ¢£¬Í¬Ê±ÒÔMODSLayer´î½¨ÍøÂçµÄbackbondÓëneck²ã²¢ÍøÂçÃüÃûΪMaintaining the Original information-Deeply Separable Network(MODSNet)¡£¡£¡£×îºó£¬ÒÔMODSConvΪ»ù´¡£¬ÒÔͨµÀ²»½µÎ¬ºÍÇáÁ¿¼¶µÄÍ·ÄÔÉè¼ÆÁËMaintaining the original dimension light-Decoupled head(MODL-Head)£¬ÔÚ¾¡¿ÉÄÜÇáÁ¿¼¶µÄÌõ¼þÏÂÔÚÔ¤²âǰֻ¹Ü¼á³Ö¸ü¶àµÄÌØÕ÷²ãÐÅÏ¢£¬ÏÔÖøÌáÉýÁ˼ì²â¾«¶ÈÓë¼ì²âËÙÂÊ¡£¡£¡£ÊµÑéЧ¹ûÅú×¢£¬Ò¼ºÅÓéÀÖAPPËã·¨ÔÚÁѺۼì²âʱ¼äÓëYOLOXËã·¨»ù±¾³Öƽ£¬²¢ÇÒ²ÎÊýÄ¿ïÔÌ19.7%ÓëÅÌËãÖØÆ¯ºó½µµÍ35.9%µÄÇéÐÎÏ£¬ÔÚÁѺÛÊý¾Ý¼¯ÉÏ׼ȷÂÊÏà½ÏÓÚYOLOXËã·¨ÌáÉýÁË27.5%£¬µÖ´ïÁË91.1%¡£¡£¡£Í¬Ê±ÔÚCOCO¡¢¡¢¡¢VOCµÈÊý¾Ý¼¯ÉÏÑéÖ¤ÁËÆä¾ßÓÐÓÅÒìµÄ·º»¯ÐÔ¡£¡£¡£ÁѺۼì²âÕû³µ°²ÅÅ·½°¸±»Ìá³ö²¢ÒÔ´ËʵÏÖËã·¨ÔÚ³µÁ¾ÐÐʻʱµÄÁѺۼì²â£¬¾ÓÉËæ³µÊµÑé֤ʵҼºÅÓéÀÖAPPËã·¨Äܹ»ºÜºÃµÄÔÚ³µÁ¾ÐÐÊ»ÖÐÍê³ÉÁѺۼì²âʹÃü¡£¡£¡£
Ñо¿»ñµÃ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðºÍ¹ã¶«Ê¡Í¨Ë׸ßÐ£ÖØµãÁìÓò£¨ÐÂÒ»´úÐÅÏ¢ÊÖÒÕ£©×¨Ïî»ù½ðµÄ×ÊÖú¡£¡£¡£


ÂÛÎĽØÍ¼
£¨ÎÄ/ͼ ×Ô¶¯»¯Ñ§Ôº£©
׫¸å£ºËÕÅô¡¢¡¢¡¢ÖÜÃîæµ Éó¸å£º¸ßÖ¾Ó¢ ³õÉ󣺳ÂÐÇÓî ¸´Éó£ºÖܺ£Ñà Ç©·¢£ºÕź£Ã÷